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Abstract-Momentum and heat transfer in mixed-convective, power-law fluid flow over arbitrarily shaped 
two-dimensional or axisymmetric bodies are examined theoretically. The Merk-Chao series expansion 
technique, with three mixed convection parameters, is used for the analysis. Solutions to the governing 
equations are obtained as universal functions which are independent of the geometry of the problem. Using 
the wall derivatives of these universal functions, results are given for the flow over the flat plate, the 
horizontal circular cylinder and the sphere. The results are compared with the literature for the limiting 

cases of forced and natural convection. 

1. INTRODUCTION 

THE BOUNDARY-LAYER transport phenomena in 
power-law non-Newtonian fluid flow has been inves- 
tigated heavily since the initial work of Acrivos et al. 

[l] and Acrivos [2] in 1960. However, in most of this 
work it has been assumed that either forced or natural 
convection effects could be neglected. In practice it is 
sometimes found that both modes of convections are 
important. The present work was done to provide a 
theoretical means of analyzing the momentum and 
energy transport in such flows. The Merk-Chao series 
solution technique is used herein, so a brief history of 
the method seems appropriate. 

An advance in the accuracy of boundary-layer series 
solutions was made possible by Merk [3] in 1959. He 
refined the ‘wedge method’ proposed by Meksyn [4] 
by choosing to treat the wedge parameter, A, as an 
independent variable rather than the streamwise coor- 
dinate, 5. Thus, the Merk series were expanded about 
the local similarity solution rather than the forward 
stagnation point of the body, as had been the con- 
vention in the past. However, an error in the form of 
the series presented by Merk was found by inde- 
pendent researchers [5,6]. Chao and Fagbenle [6] put 
forth a corrected form of Merk’s series and used it to 
perform a universal, laminar boundary-layer analysis 
for the forced flow of Newtonian fluids over iso- 
thermal bodies. Since then, the ‘Merk-Chao’ 
approach has been used with success for a family of 
boundary-layer solutions. Some of the latest appli- 
cations of the Merk-Chao series solution technique 
have been universal boundary-layer analyses of the 
mixed convection to Newtonian fluids [7] and the 
pure-forced [8] and pure-natural [9] convection to 
non-Newtonian power-law fluids. 

In the present study, Merk-Chao series are used to 

perform a universal analysis of mixed convection in 

laminar boundary-layer flows of power-law fluids 
over arbitrarily shaped, smooth isothermal bodies. 

The three-parameter Merk-Chao series is developed 
herein, and is used to transform the governing partial 
differential equation set into a sequence of coupled 
ordinary differential equation sets, which govern the 
universal functions. Solutions have been obtained for 
combinations of the mixed-convection parameters for 
various combinations of n, the power-law exponent, 
and Pr, the general Prandtl number and are tabulated 
elsewhere [lo]. Specific flow situations may be rapidly 
analyzed using these tabulated solutions or the com- 
puter programs in ref. [lo]. Results of the application 

of the present method to flows over representative 
two-dimensional and axisymmetric bodies are pre- 
sented in this paper. 

2. PROBLEM FORMULATION 

This treatment is for the steady, laminar, aiding, 
mixed-convective boundary-layer flow of a power-law 
fluid over a two-dimensional or axisymmetric body of 
arbitrary contour and uniform surface temperature, 
T,, located in a mean flow of temperature T,. The 
flow situation is illustrated in Fig. 1. The coordinate 
x denotes the distance along the body surface from 
the forward stagnation point, and the coordinate y 
denotes the normal distance from the surface. Accord- 
ingly, the velocity components u and v are in the 
x- and Jj-directions, respectively. For axisymmetric 
flows, r(x) represents the distance from the axis of 
symmetry to the body surface, and for two-dimen- 
sional flows, r = L, the reference length. Constant 
physical properties are assumed in the analysis, except 
for density in the buoyant-force term. Furthermore, 
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NOMENCLATURE 

c-1 local friction factor 
C,,. C’,4r Cf7 C’r values for 1, 4 and 7 terms 

in the series expansion. 
respectively 

(‘, coefficients in the Me&Chao series 

(co = 1) 
E variable in ref. [9] for A, 

.f dimensionless stream function 

./;. 6 universal functions in the MerkWZhao 

series 
Gr generalized Grashof number 
G,-G, functions defined in equations (33)) 

(37) 
,9, gr gravitational acceleration, component 

of g in -x direction 
K consistency index 

k thermal conductivity 

L reference length 
NN local Nusselt number 

Nu,, Nu,, NM, Nu values for 1, 4 and 7 terms 
in the series expansion, respectively 

n power-law exponent 
PV generalized Prandtl number 

4% local heat flux at the body surface 

Re generalized Reynolds number 

RI. convection ratio 
r normal distance from axis of symmetry 

to the body surface 
T temperature 

T, temperature of the free stream 

the viscous dissipation of energy and the _)I-momentum 
equation are neglected. Obviously, the results will lose 

accuracy as the y-component of gravity becomes com- 
parable to the .u-component for a situation where 
buoyant forces are comparable to the pressure forces. 
Note, however. that the main goal of this work was 

FIG. I. Physical model and coordinate system 

- 

T, temperature of the body surface 
L pseudo-velocity function 

0’1 fluid approach velocity 

C’R characteristic velocity for mixed 
convection 

u, 1’ .I-- and JJ-direction velocity 

components. respectively 

U‘, equivalent free-stream velocity 
function due to buoyancy 

U, free-stream velocity function 

.Y. _l’ coordinates along and normal to body 
surface, respectively. 

Greek symbols 
thermal diffusivity 
coefficient of thermal expansion 
angle between flat plate and gravity 
vector 
Kronecker delta 
dimensionless temperature 

A,, A,, A, mixed-convection parameters 

A, function defined in equation (38) 

<. ‘I dimensionless coordinates along and 
normal to body surface, respectively 

P density 
z I\ shear stress 

ZW, shear stress at the body surface 

4 dimensionless body coordinate, 
defined as ,Y/‘L 

Ic, stream function. 

- - 

to apply a three-parameter series expansion technique 
to analyze mixed convection problems, and the appli- 

cation of this technique is unchanged by the inclusion 
of y-momentum effects. 

The governing continuity. momentum and energy 
equations are : 

i)(w) 
-+ 

Ll(ru) 

is 
--0 

21. 

su au du, 
u-++o,=u,- 

6-Y _ c: 1’ ds 

with the boundary conditions : 

(U’J = 0 u=v=O 

(a’ .Y = 0 u = u,(O) 

ca,y-, CT, u-+u,(.u) 

T = T, 

T= T, (4) 

T+ T, 
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where u,(x) is the velocity at the outer edge of the 
boundary layer. It is assumed to be known from either 
experiment or inviscid flow theory. For the power-law 
model, the shear stress can be expressed as : 

au n-1 au 
of,., = K 1/ I :I 7 

OJ 
(5) 

where n is the positive-valued, dimensionless power- 
law exponent and K is the non-Newtonian consistency 
index, whose units obviously depend on the value of 
II. 

3. SOLUTION PROCEDURE 

Since there are only two velocity components, a 
stream function +(x, y) can be used to automatically 
satisfy continuity by letting : 

1 ati 1 w u=__ v= _-- 
r c3y r ax (6) 

and the number of equations to be solved is reduced 
to two. 

As done by Cameron et al. [7], a pseudo-velocity 
function, U(x), is defined as : 

dU du, 
udx = u, dx +s,BK - T,) 

du, du, 
= u, dx + u, s (7) 

and the mixed-convection reference velocity as : 

UR = U,+[gfiL(Tw-T,)]“2. (8) 

The generalized Reynolds, Prandtl and Grashof num- 
bers are defined as usual for power-law fluids, while 
using UR as the characteristic velocity in Re and Pr. 

Gr = p2ct2 [gB(Tw - Tcd12-” 
K2 

(9) 

The results presented herein are in terms of Re, but 
for pure-free convection the relation Re = JGr can 
be used to put them in terms of Gr. 

The x, y coordinate system is transformed into a 
dimensionless system by adopting the dimensionless 
variables : 

8x1 = g ($J- ’ (;I+’ (gj (10) 

r?(X>Y) = [&I’-(“” (S). (11) 

Also, the dimensionless stream function, f(t, q), and 
temperature, 0(<, u), are given respectively as : 

ti(X>Y) = [(n+ r)tl ‘h”+” U,L2f(& fy) (12) 

(13) 

By substituting equations (6), (lo)-(13) into equa- 
tions (2) and (3), the following equation set is 
obtained : 

W3-) dAB 
a(5,rl) +A,d4(8-1) 1 (14) 

o”+$qfeo =z 
[ 

a(e, .f) 
(n+l)Ca(r. 

1 
(15) 

E 

with the corresponding boundary conditions : 

.f(4,0) =.f’(%, 0) = 0 f’(4, v + a) -+ AB 

et&o)=1 q5,9-,a;)-+O (16) 

where the primes denote differentiation with respect 
to q, and a( , )/a(c,q) denotes the Jacobian. The As 
are the mixed-convection parameters defined as : 

A 
E 

= n(n+ 1,r(rJ; (n-l)‘of+-I) 

I I 3 u3 
(17) 

d4 

with 4 = x/L. 
The idea of expanding the dimensionless stream 

function and temperature into series is that of eli- 
minating all explicit 5 dependence from the formu- 
lation. The use of Merk-Chao series results in solu- 
tions which are perturbed about a local similarity 
state. For this reason, the accuracy is expected to be 
good throughout the entire range of all the parameters 
involved. 

For most previous appiications of the Merk-type 
series approach, only one <-dependent parameter has 
appeared in the transformed equations, and, cor- 
respondingly, only the perturbations arising due to 
the local variation in that quantity were accounted for 
in the series. In the analysis of mixed convection to 
Newtonian fluids [7], two independent c-dependent 
parameters, A3 and Ar,, arose in the transformed equa- 
tions, and Cameron et al. [7] used two-parameter 
Merk-Chao series. In the present work, a third par- 
ameter, AE, which is characteristic of power-law fluids, 
is present in the transformed energy equation. 
Although it may be possible to express this parameter 
explicitly in terms of A3 and AB, no such expression 
was found. If this function was found, it would elim- 
inate the need for the three-parameter series expan- 
sions used herein. The three-parameter Merk-Chao 
series employed for the dimensionless stream function 
is : 
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where f; =f&$, A.,, A,, n, Pr, rjt) are the universai 
functions for the dimensionless stream function. An 
identical expansion is also used to express the dimen- 
sionless temperature in terms of the universal func- 
tions for dimensionless temperature, (I, = @,(A,, As, 
&, n, Pr, q). Before the results of the series sub- 
stitutions are given, there is one detail of the devel- 
opment which is worthy of note. The term ],f”]“-’ 
which appears in equation (14) must be dealt with 
carefully. If the value of_/“’ is expected to be negative 
at any location in the flow field, which will occur if 
the u-velocity profile reaches a maximum anywhere 
inside the momentum boundary layer, then it is 
necessary to make the assumption : 

,f” ;=,f’S 3 j,f” ,jz-- 1 z /,f’gj”- 1 (19) 

as was done by Chang et a/. [9]. However, if .f” is 
expected to be everywhere positive, the absolute value 
signs can be dropped, and the quantity can be rep- 
resented more accurately by including the second term 
of the binomial series. That is : 

( ,emx .- I 
c (,j”y’ +(n- 1) (.f;;)“_? c c,,/i” (20) 

/= I 

where c, represents the series coefficient off;, with 
c’” = 1. Again, the physical interpretation of when the 
extra terms may be used is for any case where the 
buoyancy effects are smalt enough that the u-velocity 
profite never reaches a maximum inside the momen- 
tum boundary layer. In the equations below, the terms 
which arise due to the use of approximation (20), 
rather than (19), are denoted with an asterisk (*). 

Substituting equation (18) and the dimensionless 
temperature counterpart into equations (14) and (IS), 
neglecting all squared-der~va~ve, cross-derivative and 
third-or-higher-order derivative terms (i > 6 terms) 

and collecting terms with common series coefhcients 
results in the first seven ordinary differential equation 
sets which govern the universal functions. The simi- 
larity equation set, which is the only nonlinear set. is : 

f;;“+[.f;, f’;; -A,(,fx+A,(1 -Aide, 

+A&] j.f’;;j’ -” = 0 (21) 

nPr J 
~~~~(~“~*) =o G2) 

with boundary conditions : 

.f;(5,O)=,f’;(4,0)=0 .f;(t,rl-+~)+b3 

e”(5.0) = 1 &(<,q-TX))-+O. (23) 

The first-order perturbation (i = l-3) equation sets 
arc given by : 

A”‘+ vi/;“- w, -t-n+ l).f’b.f;‘i- (n-t- 2).fFf; 

~A,(1-A~)8,]/f’~/‘-“+*(l-n)f;;“(.f‘l;)~’#;” 

where A, = A?, &, A, for i = 1,2,3 and h2,, is the 
Kronecker delta. The second-order perturbation 
equation sets (i = 4-6) are : 

,~“‘+~~~~“-2~A~~~+ 1f.f“o.f;’ 

+*(l-n).fd”(.f;;)_‘.f;” = (.f;.f’;_l -.fx3)l.f‘6l’-” 

f26) 

fy+ ~[.foOl-Z(n+ l).f’bei+(2n+3)8b,f;] 
E 

= ~(.f6U,_.,-H;,.f,-l) (27) 
E 

with the corresponding boundary conditions (i = 
l-6): 

./XL 0) =J’(S, 0) = 0 .L’(S, II -+ =) -+ 0 

0,(&O) =o 0,(<.r-+rxj)-+O. (28) 

As pointed out by Acrivos ef al. [I], to allow solutions 
for n > 2 the free-stream conditions for,f: in (23) and 
(28) must be applied at a finite q, rather than at infin- 
ity, due to the mathematical nature of the momentum 
equations in the free stream. 

It seems appropriate at this point to discuss how 
equations (2 I)-(28) relate to the analogous equations 
in the literature for various limiting cases. First, the 
work that constitutes the limiting case of this study 
for Newtonian fluids is that of Cameron et al. [7]. and 
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our analysis reduces identically to that in ref. [7] for 
n = 1. As is clear from equation (17)) for Newtonian 
fluid flows, AE = 1, and the i = 3 and 6 terms dis- 
appear from the Merk-Chao series. The analysis most 
closely related to the present for pure-forced con- 
vection to power-law fluids is that in ref. [8]. For this 
case, A, = 1, which allows the momentum analysis to 
proceed independent of energy transport consider- 
ations. The momentum analysis in ref. [8] is identical 
to that herein and involves only the similarity (i = 0) 
and &-related (i = 1 and 4) perturbation equations, 
with the * terms included. However, Kim et al. [8] 
used completely different series substitutions to per- 
form their energy analysis for a step-change surface 
temperature distribution. The isothermal surface is 
the limiting case, for which the largest error in their 
series solution is to be expected. Chang et al. [9] 
obtained the analogous pure-natural convection 
(AB = 0) solution for power-law fluid flow over an 
isothermal surface by using Merk-type series for both 
the dimensionless stream function and temperature. 
The only differences between the present analysis and 
that in ref. [9] are that in the latter no results were 
obtained for dilatant fluids (n > l), possibly due to 
the singularity encountered in equation (21) for such 
fluids when the fk profile reaches a maximum, and 
that the AE (called E, the energy parameter, in ref. 
[9])-related terms were not included in their series 
expansions. Thus, the equations governing the uni- 
versal functions in ref. [9] are obtained by setting 
A, = 0 in equations (21)-(28) and, as for forced con- 
vection, using only the similarity and i = 1 and 4 per- 
turbation equations, but with the * terms left out. 
Incidentally, for the results obtained in this study, it 
was found that the A,-related terms contributed only 
minimally (about 3% at most) to the Nusselt number 
group for AB = 0, and hence the deviation of our 
results from those of Chang et al. [9] is small. 

The equation sets governing the universal functions 
were solved sequentially for the universal wall deriva- 

tives,.L”(A,, Aa, Ar, n, Pr, v = 0) and &(A,, Aa, A,, 
n, Pr. 9 = 0), using the fourth-order Runge-Kutta 
method with an automatic, interval-halving-based 
step-size adjustment. Equations (21)-(23) were solved 
using the shooting method, and equations (24))(28) 
were solved using superposition. A Cray-XMP2/8 
computer was used, due to the large number of par- 
ameter variations solved for in ref. [lo]. The details of 
the solution procedure can be found in ref. [lo], where 
results are tabulated for AB ranging from 0.0 to 1.0 
and A, and AE ranging from 0.5 to 1.0 for fifteen 
different combinations of n and Pr. The n values 
ranged from 0.5 to 2.0 and the Pr values from 1.0 to 
100. The full results from ref. [lo] are available on 
floppy disk from the authors. For the convenience of 
the reader, the universal wall derivatives for the 
n = 1.6, Pr = 100 combination are given here in Table 
1, with the corresponding case definitions in Table 2. 
This n, Pr combination is the one used in generating 
the results for specific geometries, which are presented 

in the following section. The asterisks (*) in Table 1 
denote the cases for which the * terms in equations 
(24) and (26) were left in. The computational times for 
the results presented herein averaged approximately 5 
CPU seconds per parameter set. 

In all instances, we were able to reproduce the 
results of Cameron et al. [7] ; this was used as a check 
of our computer programs. Also, our wall derivatives 
of the similarity solution universal functions generally 
matched those in refs. [8, 91 (f6 in ref. [8] andfi and 
& in ref. [9]) to at least four significant figures. There 
was at most a 0.5% difference between our wall deriva- 
tives of the perturbation universal functions and those 
in refs. [8, 91 (J” in ref. [8] andf;” and 8,’ in ref. [9], 
for i = 1 and 4). These differences are due to slight 
differences in the numerical solution techniques, not 
actual differences in the equations, since our equations 
reduce appropriately to match those in refs. [7-91. 

4. APPLICATION TO SPECIFIC GEOMETRIES 

First, a parameter must be defined to characterize 
the mixed-convection situation. The convention of 
Cameron et al. [7] is adopted in defining the con- 
vection ratio as : 

R,_ = 
u, 

u, + [g/X( r, - T,)]‘j2 . 
(29) 

Generally, the quantities of interest are the local shear 
stress and heat flux at the body surface. These are 
defined as usual : 

=K au ” 

Tw ( )I ar 

ay CL = -k&i I=o. (30) 
v=ll 

The dimensionless forms of these quantities are the 
friction factor and Nusselt number : 

‘Cf=s NM= 9J 
WTw - T,) 

(31) 

The results are independent of the Reynolds number 
if the following groupings, called the friction factor 
and Nusselt number groups herein, are used : 

$CfRe”‘“+” NuRe-“‘“+“, (32) 

However, for a general mixed-convection analysis, it is 
not possible to absorb the Prandtl number dependence 
into these groups. 

To define a specific flow situation, one must specify 
constant values for n, Pr and RL and also dimen- 
sionless forms of u,(x), u,(x) and r(x). Using these, 
one obtains values for the three A parameters, the 
Merk-Chao series coefficients and the friction factor 
and Nusselt number group coefficients for selected 
locations on the body surface. The development of 
these expressions is as follows : 

& = UmG, (4) u, = ,/WUTw - 7-a)) G(4). 

(33) 



Table I. Wall derivatlwz of umversal functions: IZ = 1.60. Pr = 100 

Case /;; 

I 
*2 
"3 
'4 
*5 
6 
*7 
*8 
*9 

*IO 
II 

*12 
$13 
*14 
*15 
I6 

*17 
"18 
*19 
*20 

0.33137107 -0.154 -0.233 -0.512 0.216 
0.39372314 - 0.083 I.732 -0.225 0.093 
0.56321306 -0.128 3.309 -0.129 0.114 
0.79349227 -0.195 4.170 -0.055 0.159 
1.05608720 -0.271 4.675 -0.000 0.213 
0.37051970 - 0.179 -0.249 -0.279 0.245 
0.42656390 -0.095 1.449 -0.129 0.105 
0.58281211 -0.132 2.948 -0.077 0.119 
0.80199228 -0.196 3.846 -0.034 0.161 
1.05608720 -0.271 4.386 -0.000 0.213 
0.47335332 -0.102 -0.177 -0.721 0.144 
0.53879889 -0.053 I.091 -0.328 0.062 
0.72790978 -0.071 2.270 -0.198 0.060 
0.99565399 -0.102 2.989 -0.087 0.072 
1.30747286 -0.138 3.419 -0.000 0.089 
0.52880794 -0.1 I6 -0.188 -0.391 0.160 
0.58662761 -0.060 0.899 -0.186 0.070 
0.75786830 -0.074 I.991 -0.117 0.064 
1.00903812 -0.103 2.728 -0.053 0.073 
1.30747286 -0.138 3.189 -0.000 0.089 

I 
*2 
*3 
*4 
*5 
6 

*7 
*8 
*9 

*10 
II 

$12 
*13 
*14 
*15 
I6 

*17 
*I8 
*I9 
*20 

/;‘x IO 

H;xlo e;x IO 0;xio 0;x IO2 l&x 10: 0,,x IO' 

-2.59184398 -0.470 1.264 -2.707 0.825 -1.655 4.037 
-2.88128293 -0.740 -9.444 -4.383 1.21 I 6.204 6.606 
-3.37250403 -0.579 -12.116 -5.413 1.092 6.749 8.106 
-3.83741088 -0.504 - 11.439 -6.268 1.079 5.931 9.360 
-4.24760666 -0.484 -10.336 -6.982 I.121 5.171 10.415 
-2.12551121 -0.353 1.029 - I.143 0.658 - 1.338 1.698 
-2.32971453 -0.603 -6.117 - 1.764 0.996 4.262 2.658 
-2.68926410 -0.480 -8.590 -2.155 0.891 5.135 3.229 
-3.04341235 -0.407 -8.446 -2.490 0.860 4.673 3.718 
-3.36152286 -0.380 -7.177 -2.772 0.878 4.130 4.134 
-2.91711507 -0.296 0.762 -3.082 0.502 -0.962 4.623 
-3.16946277 -0.456 -5.573 -4.798 0.734 3.853 7.241 
-3.64373058 -0.409 -8.040 -5.840 0.723 4.794 8.752 
-4.11'713684 -0.387 -7.977 -6.739 0.746 4.435 10.065 
-4.54467454 -0.389 -7.363 -7.498 0.789 3.951 II.183 
-2.39101633 - 0.233 0.618 - 1.304 0.410 -0.774 I.951 
-2.56614417 -0.370 -3.538 - 1.937 0.600 2.571 2.922 
-2.90744777 -0.334 -5.623 -2.328 0.586 3.578 3.491 
-3.26388139 -0.311 -5.854 -2.678 0.594 3.454 4.000 
-3.59293212 -0.306 -5.531 -2.977 0.620 3.133 4.439 

Using the definitions of R,_ and U,, and the fact that 

U=J(u:+uz),weseethat: 

U= U/R J(R:G;+(1-R,)2G:)= L',G,(g5). (34) 

Thus. 

Cd($) 

R G, 
(35) 

For axisymmetric flows the functions 

Table 2. Casedefinitions 

A, 0.00 0.25 0.50 0.75 1.00 

Ai = 0.50,1\, = 0.50 I 2 3 4 5 
&=0.50,&= 1.00 6 7 8 9 IO 
&= 1.00,&=0.50 II I2 13 14 15 
Aj= l.OO,A,= 1.00 I6 I7 I8 19 20 

f_ixlO ,f;‘x IO' ,/ ;’ x IO’ 

0.32X 0.807 
-0.775 0.340 
-1.525 0.194 
- 1.903 0.0x2 
-2.109 0.000 
0.352 0.441 

-0.657 0.196 
- 1.426 0.116 
- 1.848 0.050 
-2.083 0.000 
0.242 I.132 

-0.314 0.495 
-0.792 0.298 
-1.072 0.130 
-1.229 0.000 
0.257 0.615 

-0.248 0.282 
-0.723 0.176 
-1.032 0.079 
- I.212 0.000 

(36) 

are needed, and for two-dimensional flows GS = 1 and 
G, = 0. Also, the operator 

is needed. Now, all of the flow-situation-dependent 
quantities are expressed in terms of the above G func- 
tions as follows : 

A KG, 
3 

= (n+ 1) G G4 
7 
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where A,, which is defined as (n+ l)<( l/r)(dr/d[), is 
used below in equation (40). The Merk-Chao series 
coefficients for i = l-3 are given by : 

dA dA 
c, = (n+l)5dg= (n+l)G,G (39) 

andfori=46by: 

c, = [(n+ I)<]‘$ = [(n-t- l)G,]‘$ 

+(ll+l)~~[(l-2n)A,--(N+l)l,l (40) 

where the derivatives of the As with respect to 4 in 
equations (39) and (40) can be evaluated analytically 
or numerically. Lastly, the friction factor and Nusselt 
number group coefficients, given in terms of the G 
functions, are defined by : 

iCf Re l*(fl+lj = [n(n;l;)G,l”‘(‘i’)[,~(q =O)]” 

(41) 

Nu Re- l*,,n+l,= _[n(~~l;G,]I-(‘+“H(I1=O) 

where 

(42) 

.f”(fy = 0) = c Ci.f;“(V = 0) 
r-0 

O’(rj = 0) = i c, e:(q = 0). (43) 
i=o 

Note that the generalized Prandtl number was not 
needed in developing equations (33)-(42). In fact, the 
explicit existence of Pr in the formulation could have 
been eliminated by scaling Ar by l/Pr, but this was 
decided against. 

For each position along the body, the cor- 
responding A?, Ae and I&, along with n and Pr, are 
used to obtain J”(r) = 0) and 0:(r) = 0) for (43) by 
using the computer programs or the tables in ref. [lo]. 

Now results are given from the analysis of some 
common geometries. For all of these results, the com- 
bination n = 1.60, Pr = 100 was chosen for pres- 
entation. This was because ref. [9], which represents a 
limiting case of this analysis, did not include any 
results for n > 1, and because power-law fluids typi- 
cally have high Prandtl numbers. For each geometry, 
solutions were generated for five values of the con- 
vection ratio, R,, which represent pure-natural 
convection (RL = O.OO), pure-forced convection 
(R, = 1.00) and three combinations thereof (RL = 
0.25, 0.50 and 0.75). 

4.1. Flat plate 
The first geometry studied was the flat plate. With 

UR defined as in equation (8), the analysis is for a 

vertical plate, and if the g in equation (8) is replaced 
by g cos (6), where 6 is the angle between the plate 
and the gravity vector, the results apply to an inclined 
plate as well, until, of course, the y-direction buoyant 
forces become important. For this geometry, the three 
defining functions are simply : 

G,=l G,=,/(2& Gg=l. (44) 

For all values of RL, A3 is a constant over the plate 
length, and for RL = 0.0 or 1.0, Ar, is also constant. 
Thus, for pure-free or pure-forced convection, only 
the A,-related (i = 3 and 6) perturbation terms are 
active, which creates a good opportunity to observe 
their effect on the overall results. Table 3 illustrates 
the relative convergence of the Merk-Chao series for 
the flat plate through the ratios of the one- and four- 
term friction factor and Nusselt number groups to the 
corresponding seven-term groups. The effect of the 
A,-related terms on the Nusselt number group was 
about 6% for pure-forced convection and decreased 
with decreasing R, to a contribution of only about 
1% for pure-free convection. As for the friction factor 
group, the A,-related terms contributed 1% or less, 
except for the 2.4% for RL = 0.0, but for natural con- 
vection flows friction factor information is usually of 
secondary importance. Table 3 also shows that, for 
mixed convection for the plate, retaining the series 
correction terms is vital to obtain accurate results, 
owing mainly to the importance of the A,-related per- 
turbation terms. 

Figure 2 contains the friction factor group curves. 
For R, = 1 .O, our curve agrees exactly with the result 
of Kim et al. [S] and agrees with the result of Acrivos 
et al. [l] to within the accuracy that their value could 
be read from their figure. The high-Prandtl-number 
asymptotic solutions of Acrivos et al. [1] (R, = 1.0) 
and Acrivos [2] (RL = 0.0) are plotted in Fig. 3 along 
with our Nusselt number group curves. The forced 
convection results differ consistently by about 5% 
over the entire length of the plate, and the free con- 
vection results differ by between 2.0 and 2.8% over 
the length, with our Nusselt number groups being the 
lower in both cases. 

4.2. Horizontal circular cylinder 
The next geometry considered was the infinite, hori- 

zontal cylinder in crossflow, for which the choice of 
the G, function is very important. For bluff bodies 
like the cylinder (or the sphere, which is considered 
next), separation of the boundary layer causes a broad 
wake which alters the free-stream velocity behavior. 
In such cases, the use of the Potential Flow Theory to 
predict u,_(x), rather than an experimental pressure 
distribution, is well known to cause severe errors in 
boundary-layer results. The experimental pressure 
distribution of Shah et al. [11], given below in (45), 
was used in this work to effect a direct comparison 
with ref. [8]. The expression in ref. [11] was obtained 
by fitting data from various pseudoplastic fluids for 
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Table 3. Relative convergence of‘ the Merk Chao series as applied to the Rat plate; II = I .60. 

0.05 1.00 
1.00 I .oo 
0.05 0.75 
1.00 0.75 
0.05 0.50 
1.00 0.50 
0.05 0.25 
1.00 0.25 

.ooo 
,000 
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,534 
,320 
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1.00 0.00 0.976 
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\ 

RL = 0.75 
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FIG. 2. Local friction factor group curves for the inclined 
plate; n = 1.6. Pr = 100. 

cylinder angles ranging from 0 to 60” from the forward 
stagnation point. It does not provide an adverse pres- 
sure gradient until after the known separation point 
of around 80”, so prediction of a realistic separation 
point was not possible. The pertinent G functions for 
the horizontal cylinder are : 

8.00 

- Present SNdy I 
- - - Acrivos [Z] 

------ Aaivosefal. [l] - 

RL = 0.75 -1 

0.00’ . n ’ ’ J 
0.00 0.25 0.50 0.75 1 .oo 

Plate Posilion, Q 

Figures 4 and 5, respectively, show the friction fac- 
tor and Nusselt number group curves. For R, = 1.0, 
our friction factor group curve matches that in ref. [8] 
with a maximum difference of 0.8%, the discrepancy 

again being due only to numerical solution details. As 
shown in Fig. 5, the Nusselt number group curve of 

Kim et al. [8] is between 2.0 and 4.3% higher than the 
results of the present study, and the latter should be 
regarded as the more accurate solution since, for the 
energy analysis in ref. [S], the isothermal surface con- 
dition introduces the largest error in the series solu- 
tion. Also, it should be mentioned that in ref. [8] the 
reference velocity used was twice the reference velocity 
used in our work, which meant that different Prandtl 
numbers had to be used to allow a comparison. To 
achieve this, the results in ref. [8] for Pr = 100 were 
extrapolated out to the comparable Pr 

(100.2 ‘3”~3~“n+” = 161.59) using the well-known fact 
that Nu is proportional to Pr’ ’ for high Pr and forced 
flow. The accuracy of the comparison was then veri- 
fied by using the G, from ref. [8] (0.924-0.131d1) 
and comparing directly with the results in ref. [8]. For 
R,_ = 0.0, our Nusselt number curve agrees every- 
where within 1.6% with the asymptotic solution of 
Acrivos [2], except very near the stagnation point 

(4 < 3 ). 

4.3. Sphere 

FIG. 3. Local Nusselt number group curves for the inclined Solutions were also generated for the sphere to illus- 
plate and comparison with refs. [l, 21 ; n = 1.6, Pv = 100. trate the application of the present method to an axi- 

I .ooo 
I .OOO 
1.065 
I.061 
I.065 
1.039 
1.052 
I .OO4 
0.993 
0.993 

0.940 
0.940 
1.187 
I.180 
1.188 
I.142 
I.167 
1.052 
1.01 I 
I.01 I 

0.986 
0.986 
1.032 
I.031 
1.032 
I.026 
1.029 
I.01 I 

I .003 

1.003 

G, = 1.844-0.262@ 

G, = ,,‘(2(1-cosb)) G, = I. (45) 

Table 4 shows the relative convergence of the Merk- 
Chao series for the horizontal cylinder results. The 
series convergence is seen to be very good, with the 
similarity-solution groups being within 6.4 and 6.1% 
of the corresponding seven-term-series groups for the 

friction factor and Nusselt number groups, respec- 
tively, for all of the cases tabulated. However, for 
large values of RI, and angles nearing the adverse 
pressure gradient, the series become semi-divergent 
and more terms appear to be needed. This phenom- 
enon is more apparent in the sphere results below 
(Table 5). 
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Table 4. Relative convergence of the Merk-Chao series as applied to the horizontal cylinder; n = 1.60, 
Pr = 100 

5 1.00 1.000 1 .ooo 1.048 1.015 
60 1 .oo 0.982 1.002 1.028 1.011 
15 1.00 0.936 1.066 1.012 1.004 

5 0.75 0.999 1.000 1.048 1.015 
60 0.75 0.989 1.001 1.030 1.011 
15 0.75 0.959 1.017 1.020 1.005 

5 0.50 0.998 1.000 1.048 1.015 
60 0.50 1.023 1 .ooo 1.045 1.012 
15 0.50 1.054 0.999 1.055 1.008 

5 0.25 0.987 0.996 1.046 1.014 
60 0.25 1.034 0.997 1.061 1.013 

5 0.00 0.940 0.984 1.033 1.010 
60 0.00 0.941 0.981 1.028 1.009 

Table 5. Relative convergence of the MerkChao series as applied to the sphere ; n = 1.60. Pr = 100 

5 1 .oo I .ooo 1.000 1.025 1.007 
60 1 .oo 0.982 1.004 1.005 1.003 
75 1 .oo 0.804 1.752 0.904 0.919 

5 0.75 1.000 1.000 1.025 1.007 
60 0.75 1.001 1.003 1.012 1.004 
15 0.75 0.924 1.331 0.971 0.939 

5 0.50 0.998 0.998 1.025 1.007 
60 0.50 1.068 I .003 I .037 I .006 
15 0.50 1.223 0.997 1.082 0.986 

5 0.25 0.989 0.994 1.024 1.007 
60 0.25 1.054 1.001 1.044 I .008 

5 0.00 0.967 0.987 1.017 1.005 
60 0.00 0.974 0.991 1.012 1.004 

symmetric body. The same rationale used above for Fage [12], which is shown below with the other G 
the cylinder, regarding the choice of the G, function, functions used for the sphere, an adverse pressure 
applies to the sphere as well. However, the authors gradient is provided beginning at 74”. 
found no experimental pressure distribution for the 
flow of power-law fluids over the sphere, so one for 

G, = 1.5~$-0.4371~$~ +0.1481@ -0.0423+’ 

Newtonian fluids [12] was used. In the polynomial of 

S.OOn ’ 1 ’ 1 . 8 . 1 

2.40 1 . 1 ’ 1 . 1 . , 

1.80 

0 20 40 60 80 

FIG. 4. Local friction factor group curves for the horizontal 
circular cylinder ; n = 1.6, Pr = 100. 
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80 

FIG. 5. Local Nusselt number group curves for the horizontal 
circular cylinder and comparison with refs. [2, lo] ; n = 1.6, 

Pr = 100. 
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FIG. 6. Local friction factor group curves for the sphere; 
H = 1.6. Pr = 100. 

G2 = JjZ(l -COST)) GS = sin#. (46) 

Table 5 shows the relative convergence ofthe Merk- 
Chao series for the sphere. For the majority of the 
results. the convergence may be regarded as very good. 
As mentioned above, for flows with forced convection 
dominating, the series seem to need more terms for 
high sphere angles, which again precludes an accurate 
prediction of the separation point. 

Figures 6 and 7, respectively, show the friction fac- 
tor and Nusselt number group curves. Again, the Nus- 
selt number curve for the natural convection extreme 
is compared with Acrivos [2]. The agreement is within 

2.5% for the entire curve. except for d, < IO 

5. CONCLUDING REMARKS 

The Mel-k-Chao series solution method has been 
used to analyze the laminar, aiding, mixed-convective, 
boundary-layer Bow of power-law fluids past 
isothermal, two-dimensional or axisymmetric bodies 

6.00 

- Present Studv 

5.00 \\RL=l.m --- Aerivos121 . { 

5. W. B. Bush, Local similarity expansions of the bound- 
ary-layer equations, AIA.4 J. 2, 1857-1858 (1964). 

6. B. T. Chao and R. 0. Fagbenle. On Merk’s method of 
calculating boundary layer transfer. Zjrt. J. liecic Mrrrs 
Tra/z<fir 17,223-240 (1974). 

FIG. 7. Local Nusselt number group curves for the sphere 7. M. R. Cameron, D. R. Jeng and K. J. De Witt, Mixed 
and comparison with ref. [2] ; II = I .6. Pr = 100. forced and natural convection from two-dimensional or 

of arbitrary contour. The specific flow situation infor- 
mation is conveyed implicitly to the ordinary differ- 
ential equation sets governing the universal functions 
through three i~ixed-~onve~tioI~ parameters. Tabu- 
lated results for combinations of these three par- 

ameters for various II. Pr combinations have been 
presented elsewhere [ 101. and the results of the appli- 
cation of the method to the flat plate. the horizontal 
cylinder and the sphere have been presented herein. 

For the limiting cases of pure-forced and pure-natu- 
ral convection, the friction factor and Nusselt number 
group agreement with the literature is good. Since 
the solutions are expanded about the local similarity 
solution, the extension herein to mixed-convection is 
expected to have produced accurate results as well. 
For proper Reynolds number flows, the technique 
constitutes a general, simpie and relatively com- 

putationally inexpensive alternative to the solution of 
the unreduced governing conservation equations for 
predicting the complicated transport phenomena 
occurring in mixed convection to power-law fluids. 
The restrictions that have historically limited many 
boundary-layer solutions for power-law fluid flows. 
namely a dominant convection mode, a specific 
geometry or high Pr, do not apply to the present work. 

It is believed that the work in this paper and ref. 

[IO] mark the first solutions presented from applying 
the Merk-Chao series technique to analyze mixed 
convection to power-law fluids and. for the limiting 
case of pure-natural convection, the first results for 
n > 1. Also, it seems that this study constitutes the 
first application of Mcrk-Chao series for computing 

the heat transfer in the forced flow of power-law fluids. 
The importance of the energy parameter (&)-related 
terms in the series has. to the best of the authors’ 
knowledge, been investigated for the first time. The 
authors feel that velocity and temperature fields from 
this analysis form a good basis for predicting the mass 
transfer in power-law fluids for heterogeneous surface 
reactions. 
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